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Elements of Vibration

1.1.  INTRODUCTION

Thwchnpvergwesthebnefhmryofnbnzwnmasimphand

systematic way. The various vibration terms and definitions are dis-
cussed. Many items telaud to vnhranon. types of wbranon. pam of

vibratory system,

lysis, ete, aro di d in this

chapter. In the end some solved numerical problems are presented.
1.2. HISTORY OF VIBRATION

made the vibration known and more interesting to the

The discovery of musical xnttruments such as drums, whistles ete.
ientists and

engineers. It was known since long that sound i m related to vibration ;

but no mathematical relation was

ilable, Galileo (1564-1642), an

Italian mathematician, studied the ns-:illamns of strings and simple

dul He devel be the
lengthola,“ andlu-., and di d the term
resonance. Then Galileo and Hooke developed relationship between the
frequency and pitch of sound.

lot of scientific contribution towards dy

Sir Isaac Newton (1642-1727), an English mathematician, made a
ics by introducing the

definitions of force, mass, momentum and three laws of motion.

ped the equation of motion for

Daniel Bernoulli (1700-1782) devel.

vibrations of beams and studied the v:b_ranng strings nnd discovered

the principle of superposition of bar

i

in free
L. Euler (1707-1783) worked on the bending vibrations of a rod

————— e

and studied the dynamics of a vibrating ring. J.B.J. Fourier (1768-
1830) was a French mathematician who made valuable contribution to
the development of vibration theory. He has shown that any periodic
function can be repr ted by a series of sines and cosines. This work
of Fourier helps in analysing the experimentally obtained vibration
plots analytically.

Lagungu (1736-1818) an ltahan mathematician, worked on
d a very important equauon known
as Lagrange’s equahon 'l'bu equation is very useful in deriving the
equations of motion for a vibrating system.

Lord Rayleigh (1842-1919), an English physicist, has computed
the approximate natural frequencies of vibrating bodies using an ener-

(1
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2 MECHANICAL VIBRATIONS

gy approach. The method derived by him is vseful in developing the

ions of motion and the technique is k as Rayleigh's method.

J.H, Poincare (1854-1912), a French mathematician, contributed

a lot in the field of pure and applied mathematics. His work on non-

linear vibrations is outstanding. S.P. Timoshenko (1878-1972), a Rus-

sian engineer, worked in the field of elasticity, strength of materials

and vibrations. He studied the vibrations in beams and his work s
known as Timoshenko Beam Theory.

Frahmdiswveudbbeimpoﬁa.neeofmiomlvihnﬂousintbo

design of shaft and developed some vibratory instruments in 1909 such

as Frahm’s Reed Tachometer for ring the fi of vibrati
and dy ic vibration absorber,

i A lot of work has been done in vibration by many authors. About
thirty years back, the vibrati lysis of plex multidegree of

&eedomsymmvuydiﬁe\dt.llutmwiﬁnhhelpofﬁniu
1 thod and other ad d techniques the engineers are able
to use computers to conduct ically detailed vibration analysis of

pl hanical systems even having th ds degree of freedom.
1.3. BASIC CONCEPTS OF VIBRATION

With the discovery of musical instruments like drums, the vibra-
tion became a point of interest for scientists and since then there has
bemmuchinvuﬁpﬁonlnthoﬁddofvibnﬁon.wbodiuh-ving
mmmddnddtymunbhnfvﬂx:ﬁon.mmhinhcnmofm
bedy and elasticity relati ion among its parts. When body
particles are displaced by the applicati of external force, the internal
forces in the form of elastic energy are present in the body. These forces
try tobring the body to its original position. At equilibrium position, the
wholeeftheduﬁcemrgyilconvertedinmkineﬁtwmdbody
continues to move in the opposite direction b of it. The whole of
thahineﬁcmrgybminmvubdinbehﬁicoutninmrgydue
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2. Using shock absorbers.
3. Dynamic absorbers.
4. Resting the system on proper
1.5. DEFINITIONS -
_Periodic motion. A motion which repeats itself after equal inter-
vals of time.

Time period. Time taken to complete one cycle.

Frequency. Number of cycles per unit time.

Amplitude. The maximum displacement of a vibrating body from
its equilibrium position.

Natural frequency. When no external force acts on the system
after giving it an initial displ t, the body vib These vibra-
tions are called free vibrations and their frequency as natural frequen-
cy, It is expressed in rad/sec or Hertz.

Fundamental Mode of Vibration. The fundamental mode of
vibration of a system is the mode having the lowest natural frequency.

Degree of freedom. The mini ber of independent coor-
dinates required to specify the motion of a system at any i is
known as degrees of freedom of the system.

X, Ky Ki
. 5 [ ] X

o K2 K2
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Fig. 1.2. Finita degres of freedom.

In general, it is equal to the ber of independent displ. t
that are possible. This number varies from zero to infinity. The one, two
and three degrees of freedom systems are shown in figure 1.2, In single
degree of freedom there is only one independent coordinate (x,) to
specify the configuration as shown in figure 1.2 (2). Similarly, there are
two (xy, x). and three coordinates (x,, ¥; and xy) for two and three
d of freed y as shown in figure 1.2 (b) and 12 (c)

gr
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to which the body again returns to the equilibrium position. In this way,

ib y motion is repeated indefinitely and exchange of energy takes
place. Thus, any motion which repeats itself after an interval of time is
called vibration or oscillation. The swinging of simple pendulum as
shown in figure 1.1 is an example of vibraticn or oscillation as the
motion of ball is to and fro from its mean position repeatedly. The main
reasons of vibration are as follows :

1. Unbalanced centrifugal force in the system. This is caused
because of non-uniform material distribution in a rotating
machine element.

. Elastic nature of the system.
External excitation applied on the system.

4. Winds may cause vibrations of certain systems such as

electricity lines, telephone lines, etc.
14. IMPORTANCE OF VIBRATION STUDY IN ENGINEERING

The struet designed to support the high speed engines and
turbines are subjected to vibration. Due to faulty design and poor

facture there is unbal in the engines which i

and unpi t 5t in the rotating system b of vibration.
The vibration causes rapid wear of machine parts such as bearings and
gears. Unwanted vibrations may cause loosening of parts from the

achine. B of improper design or material-distribution, the
wheels of locomotive can leave the track due to excessive vibration
which results in accident or heavy loss. Many buildings, structures and
bridges fall because of vibration. If the frequency of excitation coincides
with one of the 1 freq ies of the , a condition of
resonance 18 reached, and dangerously large oscillations may occur
which may result in the mechanical failure of the system.

Sometimes because of heavy vibrations proper readings of instru-
ments cannot be taken. Excessive vibration is dangerous for human
beings. Thus keeping in view all these devastating effects, the study of
vibration is essential for a mechanical engi to minimize the vibra-
tional effects over mechanical comp ts by designing them suitabl

Vibration can be used for useful purposes such as vibration testing
equipments, vil Y yors, hoppers, sieves and compactors.
Vibration is found very fruitful in mechanical workshops such as in
improving the efficiency of machining, casting, forging and welding
techniqs ical instr ts and earthquakes for geological re-
search. It is useful for the propagation of sound.

Thus undesirable vibrati hould be eliminated or reduced upto
certain extent by the following methods :

1. R ing external excitation, if possibl

w N

ELEMENTS OF VIBRATION 5
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Fig. 1.3. Infinite degree of freedom.
pectively. A il beam as shown in figure 1.3 has infinite
degree of freedom.
Simple Harmonic Motion. The motion of a body to and fro about
a fixed point is called zsimple harmonic motion. The motion is periodic
and its acceleration is always directed towards the mean position and
is proportional to its distance from mean position. The motion of a
simple pendulum as shown in figure 1.1 is simple harmonic in nature.
Let a body having simple harmonic motion 1s represented by the
equation

x=Asinox LAL5.1)
x = Am 0§ ot «{1.5.2)
X =—Aw’sin ot

r=e@x L 11.5.3)

where x, x and ¥ represent the displacement, velocity and acceleration
of the body respectively.

D i [t is the resistance to the motion of a vibrating body.
The vibrations associated with this resi e are known as damped
vibrations.

Phase difference. Suppose there are two vectors x, and xy
having frequencies o rad/sec each. The vibrsting motions can be ex-
pressed as

x; = A, sin &
xy = Ay sin (et +§) ~(154)
In the above equation the term ¢ is known as the phase difference.
R When the freq; v of ext: | excitation is equal to
the natural frequency of a vibrating body, the amplitude of vibration
becomes excessively large. This ptis k 1 a8
Mechanical sy The sy isting of mass, stiffness

and damping are known as mechanical systems.

Continuous and Discrete Systems. Most of the mechanical
yst include elasti bers which have infinite number of degree
of freed Such sy are called i Continuous
systems are also known as distributed systems. Cantilever, simply
supported beam etc. are the ples of such sy
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Systems with finite number of degrees of freedom are called

ete or lumped syst
1.6. PARTS OF A VIBRATING SYSTEM

A vibratory system basically consists of three elements, namely
the mass, the spring and damper. In a vibrating body there is exchange
of energy from one form to another. Energy is stored by mass in the
form of kinetic energy (1/2 mz?), in the spring in the form of potential
energy (1/2 kx*) and di ipated in the damper in the form of heat
energy which opp the motion of the sy Energy enters the

system with the application of external force known as excitation. The
excitation disturbs the mass from its mean position and the mass goes
up and down from the mean position. The kinetic energy is converted
into potential energy and potential energy into kinetic energy, This
sequence goes on repeating and the system continues to vibrate. At the
same time damping force cx acts on the mass and opposes its motion.
Thus some energy is dissipated in each cycle of vibration due to damp-
ing, The free vibrations die out and the system remains at its static
equilibrium position. A basic vibratory system is shown in figure 1.4,

v

SPRING $
K <

A
VWV

EXCITATION 1

Fig. 1.4. Vibrating System,

The equation of motion of such a vibratory system can be written
as

mx+cx+hz=0 .{1.6.1)
where ¢x =damping force
kx = spring force
mi = inertia force
1.7. METHODS OF VIBRATION ANALYSIS
There are various methods by means of which we can derive the

equations of ion of a vib y 8y . Some of the methods are
discussed here.

8 MECHANICAL VIBRATIONS
on tho system is F, spring force kx, damping force cx and inertia force
mx, then the equation of motion can be written as
mi+ex+he=F -{(17.3.1)
The above three methods will be discussed in detail later on.
1.8. TYPES OF VIBRATION
Some of the important types of vibration are as follows :
L8.1. Free and Forced Vibration

Aftor disturbing the system the external excitation is removed,
then the system vibrates on its own. This type of vibration is known as
free vibration. Simple pendulum is one of the examples.

The vibration which is under the influence of external force is
called forced vibration. Machine tools, slectric bells etc. are the suitable
examples.

1.8.2. Linear and Non-linear Vibration

If in a vibratory system mass, spring and damper behave in a
linear manner, the vibrations caused are known as linear in nature.
Linear vibrations are governed by linear diﬂerenual equatxon.s They
follow the law of superposition. Math i peaking, if a, and a,
are the solutions of equations (1.8.2.1) and (1.8.2.2) respecuvely. then
(@ +ay) will be the solution of equation (1.8.2.3).

mi + e + ke =Fy(t) (1821

mx +ex + kx = Fyft) LA1.822)

mx +cx + kx = Fy(t) + Fa(t) ..(1.8.2.3)

On the other hand, if any of the basic of a vib y
system behaves non-linearly, the vibration is called 1t . Linear

vibration becomes non-linear for very large amplitude of vibration. It
does not follow the law of superposition.

1.8.3. Dampesd and Undamped Vibration
Ifthe vib Y 8y has a damper, the motion of the sy wili

be opposed by it and the energy of the system will be dissipated in
friction. This type of vibration is called damped vibration.

On the trary, the system having no damper is k as
undamped vibration.

1.8.4. Deterministic and Random Vibration
lfmthenbﬂmry-ymthonmomofanemnlemuhonu

X it Contrary to it

&henmdehmmlﬂcﬁbnﬁmsmhmumdmwmm
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1.7.1. Energy Method
According to this method the sum of the energies associated with
the system is constant.

Kinetic energy + Potential energy = constant
(K.E. + P.E.) = constant
:‘ (; mx’ ; kx’]s 0
mx X+ kxx =0
or mx 4+ kx=0 LAL7.01)
This is the equation of motion.
If the motion is simple harmonic given as

x=A sin
So ¥=- Ao’ sin ot
Then - mAw’ sin wt + kA sin @t =0 +{1.7.1.2)
Thus ®= V-k— rad/sec
m
.(1.7.1.3)
14fk
o f_—z.n m Bz
1.7.2. Rayleigh’s Method

This method is the extension of energy method. The method is
based on the principle that the total energy of a vibrating system is
equal to the maximum potential energy.

At any moment total energy is either the Kinetic energy or poten-
tial energy or the sum of the both. Let us say the total energy is kinetic
energy which is expressed as

(KE)ous =[ L mi? L = L maa?

“(Lae) Slgpa2
(P'E')m-lzh]m 5 kA
So m (0A) = kA

mo® =k
w="k/m

i Vk/m Hz +AL7.2,1)
2n

1.7.3. Equilibrium Method
According to this method the algebraic sum of the forces and

mamonte acting an the avetom muct ha sara 1fthe avtarnal fares arting
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1.8.5. Longitudinal, Transverse and Torsional Vibrations

Figure 1.5 represents a body of mass m carried on one end of a
weightless spindle, the other end being fixed. If the mass m moves up
and down parallel to the spindle axis, it is said to execute longitudinal
vibrations as shown in figure 1.5 (a).

igis, IIIIIIN I P Lslis

Fig. 1.5. Vibrations in spindle,

When the particles of the body or shaft move approximately
perpendicular to the axis of the shaft, as shown in figure 1.5 (b), the
vibrations so caused are known as transverse.

Ifthespmdlegetsalbemately‘ isted and untwisted on of
vib ¥ of the suspended disc, it is called to be undergoing
torsional vibrations as shown in figure 1.5 (c).

1.8.6, Transient Vibration

In ideal systems the free vibrations continue indefinitel, y a8 there
is no damping. The amplitude of vibration decay ti
of damping (in a real gy ) and ishes ulti ly. Such vrbrauon
in a real system is called transient vibration.
1.9. PERIODIC AND HARMONIC MOTION

The motion which repeats itself after an equal interval of time is
known as periodic motion. The equal interval is called time period. If
we consider a motion of the type x, = A; sin a¥, here o is the natural
&equencynndthemomnwﬂlbewpeamdaﬁnrh/mﬁmﬁehnmmc
motion is one of the form of penodxc ti ha is
represented in terms of circular sine and cosine functions. All harmonic
motions are periodic in nature but vice-versa is not always true. In the
equation x) = A, sin ¥, x, is the displacement and A; the amplitude.

ﬂevelocitymdnmlonﬁmmil-%-m»mu and % = - @'x,
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regpectively 'l'hmthe leration in a simple harmonic motion is
always ta itz displ t and di d t is a particular
nxedpoletushm!hazwhmhAmonkmohmsotsmpenodm
added, the resultant harmonic motion of same period is obtained.

Addition of Harmonic Motion

When we add two harmonic motions of the same frequency, we get
the resultant motion as harmonic. Let us have two harmonic motions of
amplitudes A, and A, the same frequency w and phase difference ¢ as

2 =A, sin o +(1.9.1)
3 =A; sin (¢ + ¢) (1.9.2)
The resultant motion is given by adding the above equations
x=x1+x;= A, sin W + A, sin (@f + ¢)
= A, sin o +A; (sin % c0s & + 8in § cos u¥)
= sin ¢ (A, + A, cos §) + A, cos @ sin 6.(1.9.3)
Assuming A, +Ajcos¢=Acos
Azsing=Asind .(1.9.4)
Now equation (1.9.3) can be written as
x=Asin ot cos 6+ A sin 8 cos wt
=A sin (¢ + 6) .{(1.9.5)

. The above equation shows that the resultant displacement is also
simple harmonic motion of amplitude A and phase 6. To find out the
value of A, squaring and adding equation (1.9.4), we get

A*=(A;+Aycos §) + Al sin ¢
=A'+A] cos’p+ 24,4, cos 0 + Adsin%
=A}+ A3+ 24,4, cos ¢
or A= (A] + A} + 24,4, cos )2 .{1.9.6)

Flg. 1.6. Addition of two harmonic mationa
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where A is the amplitude of vibration,
o angular frequency,
¢ and a phase angles, and
x digplacement
If the phase angle is zero, the above equation can be expr d as
x=Asin ot L(1L11.2)

The velocity of such a vibratory motion can be determined as
#=dx/dt and the acceleration as ¥ = d’x/dt*

So x=Ao cos ¥ -.{1.11.3)
[differentiating equation (1.11.2) w.r.t. time]

%=~ Ao’ sin of
= - o' .{1.11.4)

The above two equations are widely used in vibration analysis.
1.12. FOURIER SERIES AND HARMONIC ANALYSIS

J. F‘ounef, a French math tician, developed a periodic function
in terms of series of sines and cosines. th the help of this mathemati-
cal series known as Fourier Seres, the vibration results obtained
experimentally can be analysed analytically. If x(¢) is a periodic func-
tion with period T, the Fourier Scries can be written as

x(t):%+a|mm+c,msm+agms3w+ .....

+ by sin o + by sin 20 + by sin 3wt + ...
G,y i 12.1)
_2+Z(a,ousnnx+bnmnuui) i &
n=1
where ©=22/T is the fundamental frequency and a,aj,as,..
by, by, by.... are constant coefficients. The term (a, cos w¢ + b, sin w¢) is
called the Fundamental or First Harmonic. The term
{az cos 20 + by sin 2 @) is called the second Harmonic and so on.

o+ 2x -
I cos nx de = % =0 (n#0)
*
o
a+2n W
%
2. cinud:=-1 "":"" =0 (n#0)
a
o
@+2x
3. | cosmxcosnxdx (n#0)
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The resultant phase difference can be determined from the equa-
tion (1.9.4) as

Az sin ¢
A, +A 089
a2 Azsing «£1.9.7)
Ay +Azcos d

The graphical method for the addition of two simple harmonic
motions is shown in figure (1.6).
1.10. ORTHOGONAL FUNCTIONS

Consider the set of functions fi(z), fu(x)... fu(x)... fulx) defined such

tan @ =

0 =tan

that
b
[f@) fu®y . dx=0  ifmam ..(1.10.1)
a
b
and I fuw) . dx=r  ifm=n) (1.10.2)
o
where A is non-zero quantity and
m=123..
n=1,238...

The above functions are termed as orthogonal functions.
Certain relations of Fourier series are orthogonal in nature such

as
Jﬂn n@ sin m9 . deg[o nvm] «(110.3)
n=m
-
0O nem
Imlnaeolme.do-[x n=m] +(1.10.4)
-

Iﬁnnemma.deu[g "*"‘]

n=m -{(1,10.5)

-
1.11. SINUSOIDAL MOTION

This is periodic vibratory motion and is referred as simple har-
monic motion. It can be shown mathematically as

-Aooe(wu-o)
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@+ 2n
=% j [cos (m + n) 2 + cos (m - n) x] dx
sin(m+n)x gm nzx (m0)
m+n 4
a+2n
4. J cos® nx dx = o =N (n»0)
n+2:
5. J sin mx cos nx dx
a
P om(m—n)g*em(mong]=o o
2 m-n m+n
ak2n e
6. J sin nx cof nx dx = Ml =0
«
a+2n
7. gin mx sin nx dx
¢ vin
sinfm-n)x (m+n)x 26 i
m-n m+n &
a+2x v
a+2e
.2 _| x_sin2nx - %0
Fircalp o[ oo
a
Determination of @,

Integrate both sides of equation (1.12.1) over any interval of length
T = 21/ All the integrals on the right hand side of the above equation
are zero except the one containing aq, that is

2=/@ 2n/w
@odt @g2x _Go®
jx(t)d!-j "2 "2 o ®
0 0
2x/w
© A112.2)
So Go= x(tydt

0
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Determination of a,,
To find a,, multiply both sides of equation (1.12.1) by cos wnf and
integrate over any interval of time T = 2r/0
2n/0 2z/0
I:a(l) coa (nat) dt = Ia. coe” (na) dt
0 0
In/w
= Ia, (hﬁ%_%]d‘
]
®
2n/0

i =¥ (¢ cos (nek) dt ~(1.12.3)

0
Similarly, we can find 6, by multiplying sin (nax) both sides
2x/@

So b,.:%fx(cmn(m)dz
o
The above mathematical analysis is known as harmonic analysis,
Numerical Method For Practical Harmonic Analysis
lnpndioe,theﬁmd.ionisoﬂengiven not by a formula but by a

graph or by a table of correspanding values. In such cases, the integrals
to determine ay, @, and b, cannot the evaluated. Thus the following

alternative forms of these integrals are used :
Since the mean value of a function y =f (x) over the range

(1.12.4)

b
o1 I
(a.b)llb_a flx)ydx
a
Thuethomeanvdueofaﬁxmﬁmyax(f)mthemge

2/
=), g;j
[0, = )"21: ) x(t)dt
the above integrals become
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In the above equation if ¢ = 0, the work done will be zero. It means

force and displacement should not be in shase to get the work done.
1.14. BEATS

When two harmonic motions pass through some pointin a medium

t displ t at that point is the vector

sum of the displ: due to two p t i This super-
position of motion is called interfs The ph of beat occurs
as a result of interference between two waves of slightly different
frequencies moving along the same straight line in the same direction.

simult ly, the I

-

AMPUTUDE

Fig. 1.7. Beats.

Consider that at particular time, the two wave motions are in the
same phase. At this stage the resultant amplitude of vibration will be
maximum. On the other hand, when the two motions are not in phase

with each other, they produce minimum amplitude of vibration.

Again after some time the two motions are in phake and produce
maximum amplitude and thon minimum amplitude. This process goes
i ly keeps on chang-
is known as beat,

Let us consider two waves of the same amplitude A and slightly
different frequencies w, and . If x) and x, are the displacements of

on repeating and the Itant amplitud
ing from i to mini This ph

these waves at any time t, then

Xy = A sin ayt ..(1.14.1)
Xz = A sin @yt «£1,14.2)
The resultant displacement » at any time is given by adding the

above two equations
T +xy=x=A (sin @t + sin wy)

BLEMENTS OF VIBRATION 15

2z/@
g°=2x%£x(t)dt
:2[manvdmn{x(t)in(0,%]]

2%/
¢,=2x§ £x(t)co|(n&)dt

=2[meanvalmofx(t)m(nut)h(o.%]]
mﬂl/u
b,,=2xE £ x(t) sin (n @ £) dt
-2[meannluuofz(t)dn(nmt)in(0.%)]

1.13. WORK DONE BY A HARMONIC FORCE

Let a harmonic force F = F, sin e is acting on a vibrating body
hlviwmotionxnzolin(m-’).Thamkdonobytbafoteaduringa
small displacement dx is Fdx. So the work done in one cycle

T
&
W=jF§{dl
0
T
zf[posinm%mincw-o)]dt
0

T
=IF.,dnmtweou(W—0)dt
0

il R

T
=xoFg0 Iuinnlcoc(nl—o)dt TR < T es
0

r
=8ij[lm2«:m!‘lingl—2mw1]“
0 A

Putting 7'=2n/0

W=xFyzsiné .(113.1)
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=um‘””;”‘”m‘”‘;‘°”‘
x=Bsin ("";‘“’]z (114.3)
where B sA (50
Equation (1.14.3) repr a simple harmonic motion whose

amplitude is B. The maximum value of B is 24 and minimum zero. The
frequency of beat is (@ - ©)/2n Hz. See figure 1.7.

Differentiating equation (1.14.3) w.r.t time, we get
dx . [+ W -y . (G-
fonelB15)] (555 55

e ) i 235

2
The term - is called the slope of the beat,

dt
The existence of beats can also be shown mathematically. Let
y - @ = A = a very small value ~A1.14.4)

(" beats occur only when @, and m, are slightly different)
Then the resultant displacement x at any time is given by adding
the equations (1.14.1) and (1.14.2)
X=x) +x;
=Asin ot +A sin (@) + Aw) ¢
=Asinw t+A [sin o fcos Aot +sin Awk cos o, ¢ ]
=(A + A cos Aux) sin ©; ¢ + (A sin A o) cos wy ¢
Let x=Xsin (0t +9¢)
X 8in @, £ cos ¢ + X sin ¢ cos wy ¢
=(A+Acos At)sin ¢+ (AsinAwi)cosw £
Equaﬁngthetmmsofslnm,tandenso.tmbothsidel.wexat
Xcosdp=A+Acos Ao
Xsing=AsinAwt
Adding the squares of above two eqns., we get the amplitude of the
resultant motion.
ie X=V(A+A cos A )’ + (A sin A we)?
=V247 247 cos A ¢
=A Y2 (1 +cos A ) (1.145)
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1f the amplitudes of the two sinusocidal motions are approximately
equal then,
xy=Asginw ¢ .{1.14.8)
% =Bsinwyt ~(1.14.7)
Resultant displacement x at any time is given by adding Eqns.
(1.14.6) and (1.14.7)
x=Asinuyt+Bsinwy?
Applying eqn. (1.14.4), we get
x=Asinoy t+Bein(o;+Aw)t (" 0y =, +Aw)

On a similar analysis like above we get the amplitude of resultant
motion as

X =V(A+B cos A we)’ + (B sin A )
=VAT+ Bi 4 2AB cos A ux (1.14.8)
This expression is seen to vary between (A + B) and (A - B) with a
frequency A® which is the difference of natural frequency of the beats
phenomena,

Under the conditions of the two frequencies being :hghtly dxt-
ferent from each other, the phase diffe bet thn two

motions keeps on shifting slowly nnd ti . At the t
when these motions, repr d by r vecum arein pbase with
each other, the amplitude of the It is and

equal to the sum of amplitude of individual motion i.e. (4 + B). At a
moment, when they are out of phase, the resultant amplitude is equal
to the difference of the individual amplitude i.e. (A - B).

Thus the resultant amplitude econtinuously keeps on changing
from maximum of (A4 + B) to minimum of (A ~ B) with a frequency equal
to the difference between the individual component frequencies, This is
the BEATS PHENOMENA.

Thefrequmcy of the beats i.e. Aw should be small in order to
The amplitudes A & B should be ap-
pmnmtelyoqualtozetcleuanddmbeab.

This can be shown math ically from equation 1.14.8,

Case-1. When the two sinusoidal motions are in phase, then phase
difference An =0

Resultant amplitude = YA® + B2 + 2AB cos 0°

=YAT+ B*+ 24B (" Cos0°=1)
=(A+B)
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Again differentiating, we get
¥=i' 0’ Ac

-’ X «{1.15.5)

IMAGINARY
Y4

. ‘\l"

» ANTICLOCK WISE

Fig. 1.8 B,

This is known as acceleration vector and its amplitude is ©°X. In
figure 1.8 B, it is shown that velocity vector leads the displacement by
90° and the acceleration vectw leads the displacement by 180°. All the

ct with tant ang locity rotate in the same direction
(anticlockwise).
SOLVED EXAMPLES
Exaxpig 1.1. Add the following harmonic maotions analytically
and check the solution graphically. (P.U., 89)
x) =4 cos (ot + 10°)
x, = 6 sin (@t +607)

Sounmﬂeﬁqumqulmfubothxlmdn,wmm
the sum as
x=A sin{ot +a)
T=x4x
A (sin o¢ cos 0+ cos 0 8in o) = 4 cos (¢ + 10°) + 6 =in (ox + 60°)
=4 cos ¥ cos 10° - 4 sin ¥ sin 10°
+ B 8in a¥ cos 60°+ 6 cos ¢ sin 60°
sin @t (A cos o) + cos ot (A sin o) = sin w¢ (~ 4 sin 10° + 6 cos 60°)
+ cos @2 (4 cos 10° + 8 &in 80°)
= gin of (- 6945 + 3) + cos wt (3.9392 + 5.1961)
= gin ¢ (2.305) + cos @ (9.135)
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Case-I1. When two sinusoidal motions are out of phase then phase
difference Aw = 180°

Resultant amplitude = VAZ + B* + 2AB cos 180°

B\IAI+?-W
=(A-B) [ Cos 180°=-1]
118 nmmouormmoucummmcomm
Suppose a vector X be repr dasa pl
X=x+iy .{1.15.1)
where i = V-1
and x and y denote the real and imagi p ts of X, respectively,

refer figure 1. thandymknawnacthemhudxmagmaryparuof
vector X. If the vector makes angle 8 with the x-axis, it can be written
a8

X=AcosB+iAsin®
=Ae'® .{1.15.2)
where A is the modulus or the absolute value of the vector X.

The relation shown by equation (1.15.2) is known as Euler's
formuls.

Fig. 18 A
We can find the value of 8 as

6=tan”'2

«(1.15.3)

Velocity can be determined by differentiating equation (1.15.2)
with respect to time as

§=%=imm“' (since 0 =)
=io As'
=ioX ~(1.15.4)
This is known as velocity vector.
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g the corresponding coefficients of cos ¢ and sin ¢ on
bothndn,weobtun

A cos a = 2.305
Asin o =9,135
A =V(2.305)" +(9.135)" = \(88.7612)
=9.42

9.135
tan @ = 2305 =3.963

a=tan" (3.963)
o =75.838°
So x=9.42 sin (@ + 75.838%)
Graphical Method

For adding the two motions graphically. Let us put the two equa-
tions as

x3= 4 cos (¢ + 10°) =4 sin (w¢ + 100°)
x; = 6 8in {o¢ + 60°)

Since both the equations are in the same form, the vector diagram
can be drawn as shown in figure 1.9.

C

Fig. 1.9.
The sum of the vectors as obtained by tis 9.4 and at
an angle of 76°.

~ x=9.4sin (©f + 76°) which agrees closely with the analytical
results.
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Procedure
(i) Draw OX and OY axes.

(i) Draw vector x; equal to OB = 6 sin (¢ + 60°) Le. the length
of x, is 6 unit and it makes an angle 60° with OX axis.

(#ii) Draw vectorx; = 4 sin (¢ + 100°) i.e. the length of x5 is 4 unit
and it makes angle 100° with OX or 10° with OY axis. It is
represented by OD.

(iv) From B draw a line parallel to OD and from D draw a line
parnllellaOB Both the lines intersect at C. Now OC is the

ion which ie equal to 9.4 units and

mkesananzle’ls"mthox
ExampLz 1.2. Split the harmonic motion x = 10 sin (ot + n/6), into
two harmonic motions one having a phase angle of zero and the other of

45° (P.U., 90)
Sovurion.
Graphical Method (Refer figure 1.10)
1. Draw OX and OY axes.
2. Draw OA =10 sin (&t + 30%).
3. OA makes 30° with OX.
4. Draw OC making 45° with OX.
5. Complete the parallelogram with arms OC and OB.
6. Measurement of OB gives x; = 3.6 sin ¢ and the measure-

ment of OC gives the value of x; i.e. 23 = 7.1 sin (a¢ + 45%)

Fig. 1.10.

Let the equations are x, = a sin of
and 2y =b gin (of + 45°)
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t

:J‘ [Posinax%xolin ((m-!/3)]dt
0

4
=P,,x°cojn'n ¢ cos (e — 1/3) dt
0
ty
=P.xomjs&nm(ma!eo¢x/3¢sinmlinu/3)dt
0
4

'PMJ [Zsme:colw \Ein mw)]
0

4

-Poxowj ['i”‘z“ +?(1 -eosZor)]dl
0 (

(i) Work done during eycle T'= 2%

y f

=% [V3]=5.44 N-m ni

(i) Putting ¢ = 1 i
_c082x2x V3 1 4

K[ ““—“—'2)(2' *JE--";IH!&KQG] ‘

=:[.4“ 5+ 4']“45

=5.44 N-m
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Since X=X +xg
10 sin (ox + %/6) = a gin @ + b sin (¢ + 457)
10 sin ¢ cos ®/6 + 10 cos o sin 2/6
=a sin ¢ + b sin @ cos 45° + b cos w¢ sin 45°
Comparing the coefficients of sin ¢ and cos w¢ both sides, we
obtain the values of @ and b as
sin o (10 cos x/6) = (a + b cos 45°) sin w¢
cos ¢ (10 sin x/6) = (b sin 45°) cos @
Solving these equationsa = 3.67
b=7.07
So the equations of harmonic motions can be written as
z,=3.67 sin &¢
and %3 =7.07 sin (¢ + 45°).
EXAMPLE 1.8. Show that the resultant motion of three harmonic
motions given below is zero.
x;=asin o
xp = a sin {0 + 2n/3)
xy=a sin (¢ +4n/3) (P.U,89; MD.U, 90)
Soi.mm'l'heruulmtmouonumvmas
X=Xyt Xy Xy
=a gin o + a sin (@ + 22/3) + a sin (@ + 48/3)
=a sin o + a sin o ¢os 2x/3 + a cos ¢ sin 2x/3
+a 8in of cos 4%/3 + a cos ¥ sin 4x/3
=a §in wé +a sin @t (—-1/2) + a cos et (.866)
+a sin wt (-1/2} + a cos @t (- .866)
x =a sin @ — a 8in ¢ + .866 a cos o — 866 a cos w¢
=0
Hence, the resultant motion is zero.
Examrrs 1.4. A force Pysinet acts on a displacement
xg sin (ot - x/3). If
Py=100N, x,=002m, =2nrad/sec
Find the work done during (i) the first cycle (ii) the first second (iii)
the first quarter second.

&mman.kadona-JP.%dl
0
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(iii) Putting £ = 1/4

eosux N3
3 1
=R --‘—xwl'x -‘—unkx‘
= 1.609 N.m
ExaupLE 1.5. A body describes simult ly two moti
x;=3sin40t, xg=4a'n4lt
What is the i and mi; plitude of bined mo-
tion and what is the beat frequency ¥
Sorurion. If a body is subjected to two h i tions given by
x) =a sin ot
X, =b sin wyt
Maximum amplitude is (¢ + b) and minimum amplitude is (@ ~ b).
So in the present problem Max. amplitude = 3 + 4 =7 and minimum
amplitude=4-3=1.

Butﬁ'oquaaqzm-m'
41-40 1
- 52"&

Examrrx 1.6. Develop the Fourier Series for the curve shown in
figure 1.11.

Fig. 1.11.
Sorurion. The function is defined as
2(t) =-1/2, -r<x<0
=1/2, O<z<x
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hhumtwthemphhqmmma!abmtﬁeoﬁginmdbence
the function is odd. Therefore, ag =a, = 0 and

x
Jf(x)linuzdx

-
+

b, =

A

=
2f1
L= 2linnxd:
0
Since x(¢) sin nx is an even function.
1! cosnx
n i
-;!;(l—emu)=0hnbeingcm

2 .
= for n being odd.

So s(t)-%[ﬁ.nx&-%sin&-bé—lin&i—.h.]

ExamrLe 1.7. ﬁcmﬁliwmﬁonofapdmiagimby
as—&mmaauxmwmnonddicplmmntofﬁmpb
hmukmdonandlheamﬁﬂdnh)inch.ﬂnd(a)l&mﬂnd
frequency (b) displ t, velocity and acceleration after 21.5 seconds.

Sozwmmdwmdmhbammicthcequﬁonofdilﬂmm
can be written as

* x=Xsin o
x = X cosax
%=~ Xsin ot
As per the problem ¥ = - 9x
So -9 =o't
’ ®w=3
T=%=%“r2.0§lemd

’“%35163“""3 cycles/sec

Now the equation can be written
x =X sin 3¢
The value of amplitude is 2ie. X =2
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SoruTron. The periodic function in terms of sine and cosine geries
can be written as
[
x(!)=5°+a,cosor+a,coa2¢u+a3eos8w+....

+ by sin wt + by sin 2% + by sin 3ex + ...
The equation for the curve shown for one cycle is
For OA x(t) = 20t 051<0.05
For AC =-20t+2 005<t<0.1
The time period of motion is =0.10

m:ﬁnquency:%=

@y, using equation (1.12.2) can be expressed as
2x/@

%_0o

0.05 01
=3 !(20:):1: 'I(.-zoc +2)dt
0 095

=22 1100¢° ;% + (-100¢° + 20 |31

=1[.05 x .05 x 100 - 100 (.1* - ,05%) + 20 (.1 - .05)]
ay=1025-1+.25+11=05
a, can be determined from equation (1.12.3) as
2x/w

@
a; = "!;x(t)eos(m)d:

05 A0
:% Jmm(mmt)dt+j(—20!+2)cm(20mt)dt
0

05
06
i cos 20nnf
=20[20(~stm201mt-—(-—-;!—]
. o
0.10
=t _ Cos 20mnt
+—ﬂ)(” sin 20nnt 2022 )m
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So x=2sin 3¢
x =2 gin (3 x 21.5) = 1.97 inch
=3 (2 cos 3¢) = 6 cos (3 x 21.5) = 0.35 inch/sec
f=-0'x=-9x197
=—17.73 in/sec*
Examprz 1.8. Add two harmonic motions expressed by the follow-
ing equations :
x; =3 sin (©f +30°) ; x;=2cos (0t~ 15°)
and express the result in the form x = A sin (o¢ + ¢). (Roorkee Uni., 70)

SoLurion. ;=3 (sin ©¢ cos 30" + cos o sin 30°)
%3 =2 (cos wt cos 15° + sin ¢ sin 15°)
Adding the motions, we get -

Xy +x3 = 2.598 sin a2 + 1.5 cos ax + 1.93 cos ¢ + .5176 sin ¥
x=3.1]18in @ +3.43 cos ¥ = A sin (02 + ¢)
=A (8in ¢ cos § + cos OX 8in §)
Comparing the results, we get
Acos¢=311
Asin$=343
3.43
hn’:m
©=478°
A=\31r 4345
A=4863
Now equation can be written as
x = 4.63 sin (ox + 47.8°).

Examrre 1.9. A periodic motion observed on the oscilloscope is
illustrated in figure 1.12. Represent this motion by harmonic series.

(P.U,91)
OF- A
C
0 005 10 t{Sec)

Fig. 1.12.
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smm ]B.Iﬂ ]

zc{- 20%n
05
Since @ = 20

£ ©os nt
landjtoosntdl=-'—‘smn£- B

=—20[ﬁ(-cosnx*l-msnn+cos2m)‘
20 Gl
= =20 —=5—; (- 2 copnx + 1 + cos 2xn) |
({wmt’n’ J
=——$3. for odd values of n
nn
=0, for cven values of n

b, can be determined from equation (1.12.4) as
2n/w

b, = m/xj x . (t) sin (nex) dt
0

t ) SN
1 == nt+—;sinné
Jtsmntdt Pl P

_sinnt
Icoantdt—-——"

s
=t 8 2 CEE 20nnt|
b_:ﬂ{m{mmm\»(sz sin } :
a0
08 ]

oe
+2({2o sgeen) ]

+m[_m{;_'_maow+-—‘—,smzow}

20xn (20mn)

Soweget b, =0 )
Thus harmonic series can be shown as

4fcos20m, 1 0 1 loom.,.}
:(t)=0.25-—n;[ ay +(3)1°°‘6° *(5)2“”
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Solution by Numerical Method
I.aztttba Fourier series upto the third harmonic representing x (t)
in [0. = )be
o

x(‘)=%+a|mu¢+a¢m2ﬂ+o,m3u

+b|sinmt+b,ﬁin2u+b,sinamt...

pet us now divide the time period into 12 equal intervals of 30°
each in the range (0, 2x)

i—g»zsussvnsone
@t ——= (Angles)
Fig. 1.13.
No.ofelunanuinomcyde=b=12
Now we can derive table 1.9.1.
From the table :
Lx(t)=60
Zx(f)cos 8 =-24876
ELx(t)gin6 =0
Zx(t)cos20,=0
Lx(f);8in20,=0
Lx(t) cos30,=-3320
Ix(t);sin30,=0
%"=2xmunvaluonf:(t)
=280 _
2xlzli.o
n,=2xmennvalued'x(t).cu(ml),
=2 24306 o 146
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by = 2 xmean value of  (#); sin (),
0 _
=2XT§-0
Gz =2 x mean value of x (2); cos (2wf);
0
w2xX-==0

12
by =2 x mean value of x (t); sin (20¢);

8-
=2X’IE-0
0g= 2 x mean value of x (£); cos (3 © )y
-3.320
-21:—-—‘2 =-0.553
b3 = 2 x mean value of x (£); sin (3x¥)g -
=2x5=0
.. Fourier series
x(t)-ﬁ.o-4.146:0!20#—0.553&360#*....
ExawprLg 1.10." A harmonic motion is given .by a.:(t)=
10:in(80¢-n/x)nunwherelisinmon‘dluﬁiphauar.wkm:'-dl?u
h‘nd(i)frquncyandtkcpgiodof tion, (if) the (PK'J e
ment, velocity and acceleration. U.,
SoLuUTION. Let us assume a solution of the form
x = A sin (of - §)
Maximum velocity z = @A
Maximum Acceleration ¥ = - o° A
where A = max. displ it and the freq ,n&.
By comparing our equation with the given equation, we get
o= 30 rad/sec
¢=x/3
A=10mm
Max. velocity x=md
= 30 x 10 = 300 mm/sec
Acceleration F=-wfA
=~ (30)* x 10
=9000 mm/sec’

2n_2x
= = 0209 sec.

Period of motion
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ExawpLg 1.11. If there is a non-zero number y such that
olt+y)=0(t)

What is the type of motion ¢ (t) ? State its most important charac-
teristic. (P.U, 93)

Sorurion. This type of motion is called the periodic motion. The
important characteristic of this type of motion is its repeatability or
periodicity, Here, y is called the period of motion. It means that the
motion is repeated itself after an interval of time y.

Examrrg 1.12. Represent the periodic motions given in figure 1.14
by harmonic series. (P.U., 87, 88)

TR

2em

-t = — —
t

2cm ‘-

. 59 P S

[Bisee Oisee
Fig. 1.14.

Sorurion. The equation of line AB is given by
x(t)=-20t+2 0<¢502
The time period of motion = 0.2

So W=Q=&=10K

T-03
2%/t 02
=5 Iz(t).dl=-1£$ I(—zouzth
0 0
0z
' -5{'2,‘,“’4,2:] =5(-10(27+2x.2)
]

=5(-4+.4)=0

2/ 0.2
a,z%[z(l).m(n«)dl:%‘—f(-m +2) cos (10mnt) dt
0 0

_on Jt8in 107t cos 10mn¢) %2 ; 02
""‘m[ zo{ 1070 (1%)’}'.*.2'“”""“0
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|

lODx’n
a,=0
[ 2z/0
and  5,=% I(-m+2)lin(ruu)dz
)
02

210[ I(-W.ainlOmtdt+2lin 10mnt) dt
[}

02 02
~20 l ~2cog 10:»: + | cos 10mne
10zn

=1

=

dt

°
[

+2 cos 10nnt }

10mn
o 2008 2%n 2 cos 2rn - 2
m[ ”[ 0 10z
310[ mx.zx(—l)'+2x(—lfx—-2]
10 % 10%n

4 4
"o[mm]"{.
Thu:hum.emuunbewﬂtunu
w0=12 x Lain 10ens.

=1

MIJIJ&W&MMMMWI 15
by harmonic (P.U, 88)

loﬁbl/l/

M Y

36 MECHANICAL VIBRATIONS

+Z [——m(l%)+a—-3§nm(12m)]m4m

*n?
Exame1 1.14, Represent 17 ¢ ™ in rectangular form. (P.U.94)
SoLurion. X=17¢9%
here 8=tan? ¥
x
X=Ae"™ =4 (cos 0 +i sin 8)
and X=Ae"=A(cos 0-isin @)
Given 8 = 3.74 (radians)
_3m
312" 180° = 214.39°
Thus X =A (cos 214.39° - i sin 214.39%)
=17 |- 0.82 - i(- .564)]
=-13.94+i958 {since A=17)

Exampir 1.15. Represent 3 +i 6 in exponential form.
Sowvmion. X=3+i6
A=V3"46 =670
e¢=tan" 6/3
6 =63.43° = 1.1086 radian
X=Ac®
= 6.7 1108,
Exaurte 1.16. A force Pysinut acts on a displacement
X 8in (¢ — n/6)
where Pp=25N, x,=0.05m
and  @=20r rad/sec
What is the work done during
(i) the first second ?
(if) the first 1/40 second ? (P.U., 94)
SorurioN. We know that work done is given by

L
dx
iy
o

£

=Pm_[linmem(t¢-n/6)dt
0
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Sovrurion. Time period of motion = 0.50 sec
frequency o= ‘% = 4x rad/sec
Equation of curve for one cycle
«0=1%  ocis03

=0 03<ts05

0.3 03
2
T S I S B
0 4
0.3 03

a_-%’lx(‘)m(ﬂﬁ)dl:ljmmlwdt ¥
1]

03
_--J'tcnsmdl 400[ Py lSt”

Lo{oa sin (1.2%n) | cos (1.2xn) - 1

16x*n*

=108inlam) :,i? {oos (1.2xm) -1}

——-Ix(:)m(mx)a-——udn(tw)dcl

16x’n*

=.;‘°_2[_;A_z+_é’%':‘l}
1

....._(__...._2 " -nuzg,)

wo[ m-um,'_(mu

Thus su)=a°+2(a.mm+b.¢inm)

=l

10
=% Z[ <1m).x“;m(1m)-u]m4w

o
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Ul

-ij[sinw {cos wt cos 2/6 + sin @t sin /6] dt
]
‘l

=Pox.,mjlsinu!wsa8x .866+-;jsin’utl dt
0
4

2
P"““I[Zmnmmmx 866+2 ';u}dt
0

4
=P°’Tj[m'n 20t X .sas»,%]d:

0
_Po:om _ 08 2 sin 20x¢
== | T 88645~ 2x2m]
= 20%, xy=0.05m, Po=25 N
P°x°m[40!x10""+5+72x10“’—647x10“’]-198N—m
(ii) When the time t; = 1/40 sec
Poxo 25x.05x20% _785
3= 3 =5 =3925
Poxo © [ - cos 40t t_sindoxt 866] . .
3 [ 40% x.866¢2- 80% mt-l/.Osec
LL _sinx 866
“3”5[' aox 8884 56~ sox 401:]
=0.48 N-m

ExaupLr 1.17. A harmonic motion given by the equation
x =5 sin (3t + ) is 20 be split into two components such that one leads
it by 30° and the other lags it by 80°. Find the components.
SorurioN. Let the required components are given by
%) =A; sin (3¢ + § ~ 80°) and x; = A; sin (37 + ¢ + 30°). We can solve the
equation graphically as shown in figure 1.16.
Procedure :
1. Draw OA =5 cm showiag 5 sin (3t + ¢) in any direction as
shown.
2. Draw OB’ from O making angle 80° (lag} with OA.
3. Draw OC’ from O making angle 30° (leading) with OA.
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Fig. 1.16.
4. RuolvnOAnlongOB'nndO(.‘uOBandOCWaively.
5. OB and OC are the required components,
6. BymusunmsntOB:2.663in(3¢¢¢-80°)i.¢.A1-2.68

OC=5.248in (3t + ¢+ 30% ie. Ay = 5.24

ExampLr 1.18. A body is subjected to two harmonic motions as
given below :

xy=15sin (Wt +x/6) and x3=8cos (Wt +x/3)
Whathamonwmuoudmuldbcgwenmthcbodybbnnguw
equilibrium ? (M.D.U,, 95; P.U., 99)
SOLUTION. Let A sin (¢ + ) extra motion be given to the body.
Then Asin(Wt+9)+x;+23=0
Expanding various terms, we got
Agin @t cos ¢ +Acoswising
+ 15 8in @ ¢ cos /6
+ 15 cos w ¢ 8in x/6
+8 cos wt cos =/3
-Beinwetsinxk/3=0
8in © #A cos ¢ +6.07) + cos 0 HA sin ¢+ 11.5) =0
The coefficients of sin a¢ and cos ¢ are equated to zero.
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Represent the periodic motions given in figure 1.3 P by harmonic series.
x4

o, o
i

Fig. 1.3 P.
5. Spl.ig up the harmonic motion x = 10 sin (w + x/6) into two harmonic
motions one having a phase angle of zero and the other of 46°. (P.U, 90)
6. Add the following vectors analytically
x1 =4 co8 (f + 10°); xg =6 sin (wt + 60°)
Check the solution graphically. (P.U., 89)
A harmonic displacement is given by x(¢) = § sin (20 + n/3) mm, where ¢
is in seconds and phase angle in radians. Find (i) frequency and period of
motion, (if) the maximum displacement velocity and acceleration.
8, madnsphcﬂumofﬂnshdexinlhcsbdercukmunvmby

N

xw24cos Ot +3/2 08 1651
Plot a displacement versus time diagram. What is the acceleration of the
piston at ¢ = 1/8 sec. {P.U,92)
9 R the followi ¥ bers in exy tial form
(l)-3014 (i) - 3 -Jj4 (P.U, 59
10, P)ndthumnoﬂwoh-rmm:cmobouofmllm;phmdnbntohhghuy
Di the beat ph that result from this
sum. (P.U., 99)
1L ShomedmphhumkmMm(SEM)mlhhqmmy And
whnnuddedmllmnltmaperiodlc of fir kb
the above for n ber of h ic functi \vith fre i
P, 2p, np, ete (P.U., 96)

12 Expmnf(x)exuahdfnnxuiuuﬁuin0<x<!

13. Find the half-range cosine series for the fanction 1
interval < x < 1. [yt =17 in the

H e
ence prove that x* =8 (1)’ (3), (5,2 ]

14. ﬁofdhmmdymmhphmlmmdamn

hine part for the ion x of the flywheel. Expand y in the form of a
Fourier series:
x=0 %/6 20/6 3n/6 4x/6 5x/6
y=0 92 144 178 17.3 117

15. Obtain the constant term and the coefficients of the first sine and cosine
terms in the Fourier expansion of y as given in the following table :

[ x 0 1 2 3 4 5

y 9 18 24 28 26 20
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Thus A cos $=-6.07
Adin¢=-1185
- tan g =115~ 1894

$=62.17°,242.17°
Now A?sin® ¢ +A? cos® ¢ = (11.5)" + (6.07)* = 169.0

A'=169
A=13
The equation of harmonic motion can be written as
13 sin (0 ¢ + 242.17°)
Problems
1. Represent the periodic motion given in figure 1.1 P, by harmonic motion.
{(AMLE, 89
Fig. 11P.
2. Abody is subjected to the two h i tions as
x1 =15 sin (ot + 2/6)
x3= 8 cos (0 + %/3)
What extra motion sheuld be given to the dody to bring it to the static
equilibriam 7 (P.U,, 90)
8. Represent the periodic motion given in figure 1.2 P, by harmenic series.
(P.U. 85)
of
PART OF SINE WAVE
© b
—»f 0-2Sec | N
Fig. 1.2P.

2
Un